HOMEWORK 4 SOLUTIONS

CHAPTER 9

9.C1

Tangential acceleration of a point on a rotating object is the component of point's acceleration vector that is perpendicular to the radial component. Unlike the radial acceleration, the tangential acceleration is zero for a uniformly rotating object (i.e one whose angular velocity is constant).

9. MC1

B. One turn is 2π radians = $2 \times 3.14 = 6.28 \approx 6$.

9. MC2

Angular motion is mathematically similar to linear motion. In particular have for the angular "distance" θ that an object with angular acceleration α rotates through at time *t* is

$$\theta = \frac{1}{2} \alpha t^2$$

(1)

(assuming that objects starts with zero angular velocity at angle of zero) [This is analogous to $x = \frac{1}{2}at^2$ for linear motion.]

We know that t = 2T from the problem. All we need now is α . Have

$$\alpha = \frac{\omega_{final} - \omega_{initial}}{T}$$
The change in angular acceleration over the first revolution (2)
$$\omega_{average} = \frac{\omega_{final} + \omega_{initial}}{2}$$
The definition of average angular velocity (3)

We are told that $\omega_{initial} = 0$.

We are told that $\omega_{average} = \frac{1 revolution}{T}$.

Inserting this into (3) gives $\omega_{final} = \frac{2revolutions}{T}$.

Inserting this into (2) gives $\alpha = \frac{2revolutions}{T^2}$

Inserting this into (1) gives $\theta = \frac{1}{2} \left(\frac{2revolutions}{T^2} \right) (2T)^2 = 4$ revolutions. **[C]**

9. MC10

From the definition of the moment of inertial I

 $I = m(2d)^2 + (2m)d^2 = 6md^2$

After the masses switch positions, the new moment of inertial I' is

$$I' = (2m)(2d)^2 + md^2 = 9md^2$$

Solve first equation for *d*: $d = \sqrt{\frac{I}{6m}}$.

Insert this into the second equation:

$$I' = 9m \left(\sqrt{\frac{I}{6m}}\right)^2 = \frac{3}{2}I \qquad [C]$$

9. MC11

The general formula for moment of inertial *I* is

$$I=\sum_{i}m_{i}r_{i}^{2}.$$

If the r_i s double, *I* increases by a factor of 4. If the m_i s double, *I* increase by a factor of 2. $4 \times 2 = 8$.

9. MC15

[**C**]

Let $I = \beta M R^2$ where $\beta = \frac{2}{5}$ for the solid sphere, and $\beta = \frac{2}{3}$ for the hollow sphere.

Initial potential energy completely converted to kinetic energy.

Have energy conservation

initial potential energy = (final kinetic energy of linear motion) + (final kinetic energy of rotational motion)

$$Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2$$

For rotational motion have $v = R\omega$. Also, $I = \beta M R^2$ So

$$Mgh = \frac{1}{2}Mv^{2} + \frac{1}{2}\left(\beta MR^{2}\left(\frac{v}{R}\right)^{2}\right)$$
$$= \frac{1}{2}(1+\beta)Mv^{2}$$

Solve for v

$$v = \sqrt{\frac{2gh}{1+\beta}}$$

The larger is β , the smaller is v. So the hollow sphere $(\beta = \frac{2}{3})$ is moving more slowly than the solid sphere $(\beta = \frac{2}{5})$ at the bottom of the ramp.

Answer is **A.** The solid sphere is faster.

CHAPTER 10

10.1. Set Up: Let counterclockwise torques be positive. τ = Fl with l = r sin φ.
Solve: (a) τ = +(10.0 N)(4.00 m) sin 90.0° = 40.0 N ⋅ m, counterclockwise.
(b) τ = +(10.0 N)(4.00 m) sin 60.0° = 34.6 N ⋅ m, counterclockwise.
(c) τ = +(10.0 N)(4.00 m) sin 30.0° = 20.0 N ⋅ m, counterclockwise.
(d) τ = -(10.0 N)(2.00 m) sin 60.0° = -17.3 N ⋅ m, clockwise.
(e) τ = 0 since the force acts on the axis and l = 0
(f) τ = 0 since the line of action of the force passes through the location of the axis and l = 0.
Reflect: The torque of a force depends on the direction of the force and where it is applied to the object.

10.3. Set Up: Let counterclockwise torques be positive. $\tau = Fl$ Solve: $\tau_1 = -F_1R = -(7.50 \text{ N})(0.330 \text{ m}) = -2.48 \text{ N} \cdot \text{m}.$

 $\tau_2 = +F_2R = -(5.30 \text{ N})(0.330 \text{ m}) = +1.75 \text{ N} \cdot \text{m}.$

 $\Sigma \tau = \tau_1 + \tau_2 = -0.73 \text{ N} \cdot \text{m}$. The net torque is 0.73 N $\cdot \text{m}$, clockwise.

10.5. Set Up: Let counterclockwise torques be positive. $\tau = Fl$ Solve: $\tau_1 = -F_1l_1 = -(18.0 \text{ N})(0.090 \text{ m}) = -1.62 \text{ N} \cdot \text{m}$. $\tau_2 = +F_2l_2 = +(26.0 \text{ N})(0.090 \text{ m}) = +2.34 \text{ N} \cdot \text{m}$. $\tau_3 = +F_3l_3 = +(14.0 \text{ N})(0.127 \text{ m}) = +1.78 \text{ N} \cdot \text{m}$. $\Sigma \tau = \tau_1 + \tau_2 + \tau_3 = 2.50 \text{ N} \cdot \text{m}$, counterclockwise. Reflect: It is important to take into account the direction of each torque when computing the net torque. 10.12. Set Up: Apply $\sum F_y = ma_y$ to the suitcase. Let +y be downward. Apply $\sum \tau = l\alpha$ to the wheel. Let the counterclockwise sense of rotation be positive. The angular velocity ω and angular acceleration α of the wheel are related to the linear velocity v and linear acceleration a of the suitcase by $v = R\omega$ and $a = R\alpha$.

Solve: (a)
$$\omega = \frac{v}{R} = \frac{3.50 \text{ m/s}}{0.400 \text{ m}} = 8.75 \text{ rad/s}$$

(b) For the suitcase, $y - y_0 = 4.00 \text{ m}$, $v_{0y} = 0$, $v_y = 3.50 \text{ m/s}$. $v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$ gives
 $a_y = \frac{v_y^2 - v_{0y}^2}{2(y - y_0)} = \frac{(3.50 \text{ m/s})^2 - 0}{2(4.00 \text{ m})} = +1.53 \text{ m/s}^2.$
 $\alpha = \frac{a_y}{R} = \frac{1.53 \text{ m/s}^2}{0.400 \text{ m}} = 3.82 \text{ rad/s}^2.$

The free-body diagram for the suitcase is given in Figure 10.12a.

 $\sum F_y = ma_y$ gives mg - T = ma and $T = m(g - a) = (15.0 \text{ kg})(9.80 \text{ m/s}^2 - 1.53 \text{ m/s}^2) = 124 \text{ N}$. The freebody diagram for the wheel is given in Figure 10.12b. $\sum \tau = I\alpha$ gives $TR = I\alpha$ and

$$I = \frac{TR}{\alpha} = \frac{(124 \text{ N})(0.400 \text{ m})}{3.82 \text{ m/s}^2} = 13.0 \text{ kg} \cdot \text{m}^2$$

10.13. Set Up: For the pulley $I = \frac{1}{2}MR^2$. The elevator has

$$m_1 = \frac{22,500 \text{ N}}{9.80 \text{ m/s}^2} = 2300 \text{ kg}.$$

The free-body diagrams for the elevator, the pulley and the counterweight are given in Figure 10.13. Apply $\sum \vec{F} = m\vec{a}$ to the elevator and to the counterweight. For the elevator take +y upward and for the counterweight take +y downward, in each case in the direction of the acceleration of the object. Apply $\sum \tau = l\alpha$ to the pulley, with clockwise as the positive sense of rotation, n is the normal force applied to the pulley by the axle. The elevator and counterweight each have acceleration a. $a = R\alpha$.

10.29. Set Up: For a thin-walled hollow cylinder $I = mR^2$. For a slender rod rotating about an axis through its center, $I = \frac{1}{12}ml^2$. Solve: $L_i = L_f$ so $I_i\omega_i = I_f\omega_f$. $I_i = 0.40 \text{ kg} \cdot \text{m}^2 + \frac{1}{12}(8.0 \text{ kg})(1.8 \text{ m})^2 = 2.56 \text{ kg} \cdot \text{m}^2$. $I_f = 0.40 \text{ kg} \cdot \text{m}^2 + (8.0 \text{ kg})(0.25 \text{ m})^2 = 0.90 \text{ kg} \cdot \text{m}^2$.

$$\omega_{\rm f} = \left(\frac{I_{\rm i}}{I_{\rm f}}\right) \omega_{\rm i} = \left(\frac{2.56 \text{ kg} \cdot \text{m}^2}{0.90 \text{ kg} \cdot \text{m}^2}\right) (0.40 \text{ rev/s}) = 1.14 \text{ rev/s}$$

10.39. Set Up: The free-body diagram is given in Figure 10.39. F_f is the force on each foot and F_h is the force on each hand. Use coordinates as shown. Take the pivot at his feet and let counterclockwise torques to be positive.

Solve: $\Sigma \tau = 0$ gives $+ (2F_h)(1.70 \text{ m}) - w(1.15 \text{ m}) = 0$

$$F_{\rm h} = w \frac{1.15 \,{\rm m}}{2(1.70 \,{\rm m})} = 0.338w = 272 \,{\rm N}$$

 $\Sigma F_y = 0$ gives $2F_f + 2F_h - w = 0$ and $F_f = \frac{1}{2}w - F_h = 402$ N - 272 N = 130 N

Reflect: His center of mass is closer to his hands than to his feet, so his hands exert a greater force.

Chapter 11 Multiple Choice

 $P_{\text{Ressure}} = \frac{F_{\perp}}{A} = \frac{F_{\text{sin}} 60^{\circ}}{2 m^2}$ 3. $= (10N) \frac{\sqrt{3}}{2}$ = 5/3 N/m2 = 4.33 N/m2 $= 4.33 P_{a}$ (B) 4. Shear Stress = $\frac{F_{11}}{A} = \frac{F_{00}60^{\circ}}{2m^2}$ $= \frac{(10N)\frac{1}{2}}{2m^2}$ = 2.5 Pa (A) 9. Dimensions same, weight same -> stress is same $stress = -Y_A \frac{\Delta l_A}{l} = -Y_B \frac{\Delta l_B}{l}$ $-\frac{\gamma_{A}}{2}\frac{\Delta l_{B}}{l}=-\frac{\gamma_{B}}{B}\frac{\Delta l_{B}}{l}$ $\Delta l_{A}=Z\Delta l_{B}$ $Y_{A} = \frac{1}{2}Y_{B}$ (C)

Chapter 11 Problems

11.5. Set Up: $A = 50.0 \text{ cm}^2 = 50.0 \times 10^{-4} \text{ m}^2$. $Y = \frac{l_0 F_\perp}{A \Delta l}$ Solve: relaxed: $Y = \frac{(0.200 \text{ m})(25.0 \text{ N})}{(50.0 \times 10^{-4} \text{ m}^2)(3.0 \times 10^{-2} \text{ m})} = 3.33 \times 10^4 \text{ Pa}$ maximum tension: $Y = \frac{(0.200 \text{ m})(500 \text{ N})}{(50.0 \times 10^{-4} \text{ m}^2)(3.0 \times 10^{-2} \text{ m})} = 6.67 \times 10^5 \text{ Pa}$

11.8. Set Up: $Y = \frac{\text{stress}}{\text{strain}}$. A 5.0% elongation means $\Delta l/l_0 = 0.050$. For a spring, $F_T = kx$. Solve: (a) stress = $Y \times \text{strain} = (1474 \times 10^6 \text{ Pa})(0.050) = 7.4 \times 10^7 \text{ Pa}$ (b) stress = F_T/A so $F_T = \text{stress} \times A = (7.37 \times 10^7 \text{ Pa})(78.1 \times 10^{-6} \text{ m}^2) = 5.76 \times 10^3 \text{ N}$ The change in length is $x = \Delta l = (0.050)(25 \text{ cm}) = 1.25 \text{ cm}$. $F_T = kx$ gives

$$k = \frac{F_{\rm T}}{x} = \frac{5.76 \times 10^3 \,{\rm N}}{1.25 \times 10^{-2} \,{\rm m}} = 4.6 \times 10^5 \,{\rm N/m}$$

(c) $F = 13mg = 13(75 \text{ kg})(9.80 \text{ m/s}^2) = 9555 \text{ N}$ and $x = \frac{F_T}{k} = \frac{9555 \text{ N}}{4.6 \times 10^5 \text{ N/m}} = 2.08 \text{ cm}$

11.9. Set Up: $Y = \frac{F_{\rm T}/A}{\Delta l/l_0}$ so $F_{\rm T} = \left(\frac{YA}{l_0}\right) \Delta l$ and $k = \frac{YA}{l_0}$. From Problem 11.8, $k = 4.6 \times 10^5$ N/m for the natural Achilles tendon. $A = \pi r^2$

Solve: (a) $k = \frac{YA}{l_0}$ so $A = \frac{kl_0}{Y} = \frac{(4.6 \times 10^5 \text{ N/m})(0.25 \text{ m})}{30 \times 10^9 \text{ Pa}} = 3.8 \times 10^{-6} \text{ m}^2$ $A = \pi r^2$ so $r = \sqrt{A/\pi} = 1.1 \text{ mm}$ and the diameter is 2.2 mm. (b) The natural tendon has $r = \sqrt{(78.1 \text{ mm}^2)/\pi} = 4.99 \text{ mm}$ and diameter 10.0 mm. The artificial tendon's diameter

(b) The natural tendon has $r = \sqrt{(78.1 \text{ mm}^2)/\pi} = 4.99 \text{ mm}$ and diameter 10.0 mm. The artificial tendon's diameter is much smaller.

Reflect: The artificial tendon has a larger Y and therefore a smaller diameter.

11.10. Set Up: stress $= \frac{F_{\perp}}{A}$, strain $= \frac{\Delta l}{l_0}$. Solve: (a) 196 × 10⁶ Pa $= \frac{F_{\perp}}{\pi (25 \times 10^{-6} \text{ m})^2}$ and $F_{\perp} = 0.385 \text{ N}$. (b) 0.40 $= \frac{l - l_0}{l_0}$ and l = 12 cm gives $l_0 = 8.6 \text{ cm}$. 11.11. Set Up: $= \frac{F_{\text{T}}/A}{\Delta l/l_0}$ Solve: (a) $F_{\text{T}} = 8mg = 5880 \text{ N}$. $\frac{\Delta l}{l_0} = \frac{F_{\text{T}}}{AY} = \frac{5880 \text{ N}}{(10 \times 10^{-4} \text{ m}^2)(24 \times 10^6 \text{ Pa})} = 0.24 = 24\%$ (b) $F_{\text{T}} = 4mg$ so $\frac{\Delta l}{l_0} = \frac{1}{2}(24\%) = 12\%$

Reflect: Young's modulus for cartilage is much smaller than typical values for metals and the fractional change in length is larger.

11.14. Set Up: $\frac{\Delta V}{V_0} = -\frac{\Delta p}{B}$. $\Delta p = (1.0 \times 10^4 \text{ Pa/m})d$, where d is the depth below the surface. Solve: (a) $\Delta V = -\frac{\Delta p}{B}V_0 = -\frac{(1.0 \times 10^4 \text{ Pa/m})(33 \text{ m})}{2.2 \times 10^9 \text{ Pa}}(1.0 \text{ cm}^3) = -1.5 \times 10^{-4} \text{ cm}^3$ One cubic centimeter of her blood decreases in volume by $1.5 \times 10^{-4} \text{ cm}^3$. (b) $\frac{\Delta V}{V_0} = -\frac{1}{2}$ gives $\Delta p = B(\frac{1}{2}) = 1.1 \times 10^9 \text{ Pa}$

The depth would be $d = \frac{\Delta p}{1.0 \times 10^4 \text{ Pa/m}} = \frac{1.1 \times 10^9 \text{ Pa}}{1.0 \times 10^4 \text{ Pa/m}} = 1.1 \times 10^5 \text{ m} = 110 \text{ km}$. The ocean is not this deep; the greatest depth in the ocean is an order of magnitude less than this, about 11 km.

11.16. Set Up: $\frac{\Delta V}{V_0} = -\frac{\Delta p}{B}$. 1 atm = 1.01 × 10⁵ Pa. Solve: (a) $\Delta p = -B\frac{\Delta V}{V_0} = -(15 \times 10^9 \text{ Pa})(-0.0010) = 1.5 \times 10^7 \text{ Pa} = 150 \text{ atm}$

(b) The depth for a pressure increase of 1.5×10^7 Pa is 1.5 km. Unprotected dives do not approach this depth so bone compression is not a concern.