
    HOMEWORK 4 SOLUTIONS 
 
CHAPTER 9 
 
9.C1 
 
Tangential acceleration of a point on a rotating object is the component of point’s acceleration vector 
that is perpendicular to the radial component.    Unlike the radial acceleration, the tangential 
acceleration is zero for a uniformly rotating object (i.e one whose angular velocity is constant). 
 
9. MC1 
 

B.  One turn is 2π radians = 2 x 3.14 = 6.28 ≈  6. 

 
9. MC2 
 
Angular motion is mathematically similar to linear motion.  In particular have for the angular “distance” 

θ that an object with angular acceleration α rotates through at time t is  
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(assuming that objects starts with zero angular velocity at angle of zero)    [This is analogous to 
2

2

1 atx = for linear motion.] 

 

We know that t = 2T  from the problem.  All we need now is α.  Have 
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We are told that 
T

revolution
average

1
=ω . 

 

Inserting this into (3) gives  
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Inserting this into (2) gives 
2

2

T

srevolution
=α  

 

Inserting this into (1) gives 2
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9. MC10 
 

From the definition of the moment of inertial I 
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After the masses switch positions, the new moment of inertial I’ is 
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Solve first equation for d:   
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Insert this into the second equation: 
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9. MC11  
 

The general formula for moment of inertial I is 
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If the ri s double, I increases by a factor of 4.   If the mi s double, I increase by a factor of 2. 

4 x 2 = 8. 
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9. MC15 
 

Let 2MRI β=   where 
5

2
=β  for the solid sphere, and 

3

2
=β  for the hollow sphere. 

 
Initial potential energy completely converted to kinetic energy.   
 
Have energy conservation 
 
 initial potential energy = (final kinetic energy of linear motion) + 
           (final kinetic energy of rotational motion) 
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For rotational motion have ωRv = .  Also,  2MRI β=  

So 
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Solve for v 
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The larger is β , the smaller is v.    So the hollow sphere (
3

2
=β ) is moving more slowly than the solid 

sphere (
5

2
=β ) at the bottom of the ramp. 

 

Answer is A.   The solid sphere is faster. 

 
 
CHAPTER 10 
 

 
 

 
 

 
 



 

 



 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 11 Multiple Choice 

 
 
 
 
 
 
 
 



 
Chapter 11 Problems 

 
 

 

 



 

 


