HOMEWORK 4 SOLUTIONS

CHAPTER 9

9.C1

Tangential acceleration of a point on a rotating object is the component of point's acceleration vector that is perpendicular to the radial component. Unlike the radial acceleration, the tangential acceleration is zero for a uniformly rotating object (i.e one whose angular velocity is constant).

9. MC1

B. One turn is 2π radians $=2 \times 3.14=6.28 \approx 6$.

9. MC2

Angular motion is mathematically similar to linear motion. In particular have for the angular "distance" θ that an object with angular acceleration α rotates through at time t is

$$
\begin{equation*}
\theta=\frac{1}{2} \alpha t^{2} \tag{1}
\end{equation*}
$$

(assuming that objects starts with zero angular velocity at angle of zero) [This is analogous to $x=\frac{1}{2} a t^{2}$ for linear motion.]

We know that $t=2 T$ from the problem. All we need now is α. Have

$$
\begin{array}{ll}
\alpha=\frac{\omega_{\text {final }}-a_{\text {initial }}}{T} & \text { The change in angular acceleration over the first revolution } \tag{2}\\
\omega_{\text {average }}=\frac{\omega_{\text {final }}+\omega_{\text {initial }}}{2} & \text { The definition of average angular velocity }
\end{array}
$$

We are told that $\omega_{\text {initial }}=0$.
We are told that $\omega_{\text {average }}=\frac{1 \text { revolution }}{T}$.
Inserting this into (3) gives $\omega_{\text {final }}=\frac{2 \text { revolutions }}{T}$.
Inserting this into (2) gives $\alpha=\frac{2 \text { revolutions }}{T^{2}}$
Inserting this into (1) gives $\theta=\frac{1}{2}\left(\frac{2 \text { revolutions }}{T^{2}}\right)(2 T)^{2}=4$ revolutions. [C]

9. MC10

From the definition of the moment of inertial I

$$
I=m(2 d)^{2}+(2 m) d^{2}=6 m d^{2}
$$

After the masses switch positions, the new moment of inertial I^{\prime} is

$$
I^{\prime}=(2 m)(2 d)^{2}+m d^{2}=9 m d^{2}
$$

Solve first equation for $d: \quad d=\sqrt{\frac{I}{6 m}}$.
Insert this into the second equation:

$$
I^{\prime}=9 m\left(\sqrt{\frac{I}{6 m}}\right)^{2}=\frac{3}{2} I
$$

9. MC11

The general formula for moment of inertial I is

$$
I=\sum_{i} m_{i} r_{i}^{2} .
$$

If the $r_{i} \mathrm{~s}$ double, I increases by a factor of 4 . If the $m_{i} \mathrm{~s}$ double, I increase by a factor of 2 . $4 \times 2=8$.

9. MC15

[C]

Let $I=\beta M R^{2}$ where $\beta=\frac{2}{5}$ for the solid sphere, and $\beta=\frac{2}{3}$ for the hollow sphere.
Initial potential energy completely converted to kinetic energy.
Have energy conservation

$$
\begin{aligned}
& \text { initial potential energy }=\begin{array}{l}
\text { (final kinetic energy of linear motion) })+ \\
\text { (final kinetic energy of rotational motion) }
\end{array} \\
& M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}
\end{aligned}
$$

For rotational motion have $v=R a$. Also, $I=\beta M R^{2}$
So

$$
\begin{aligned}
M g h & =\frac{1}{2} M v^{2}+\frac{1}{2}\left(\beta M R^{2}\right)\left(\frac{v}{R}\right)^{2} \\
& =\frac{1}{2}(1+\beta) M v^{2}
\end{aligned}
$$

Solve for v

$$
v=\sqrt{\frac{2 g h}{1+\beta}}
$$

The larger is β, the smaller is v. So the hollow sphere ($\beta=\frac{2}{3}$) is moving more slowly than the solid sphere ($\beta=\frac{2}{5}$) at the bottom of the ramp.

Answer is \mathbf{A}. The solid sphere is faster.

CHAPTER 10

10.1. Set Up: Let counterclockwise torques be positive. $\tau=F l$ with $l=r \sin \phi$.

Solve: $\left(\right.$ a) $\tau=+(10.0 \mathrm{~N})(4.00 \mathrm{~m}) \sin 90.0^{\circ}=40.0 \mathrm{~N} \cdot \mathrm{~m}$, counterclockwise.
(b) $\tau=+(10.0 \mathrm{~N})(4.00 \mathrm{~m}) \sin 60.0^{\circ}=34.6 \mathrm{~N} \cdot \mathrm{~m}$, counterclockwise.
(c) $\tau=+(10.0 \mathrm{~N})(4.00 \mathrm{~m}) \sin 30.0^{\circ}=20.0 \mathrm{~N} \cdot \mathrm{~m}$, counterclockwise.
(d) $\tau=-(10.0 \mathrm{~N})(2.00 \mathrm{~m}) \sin 60.0^{\circ}=-17.3 \mathrm{~N} \cdot \mathrm{~m}$, clockwise.
(e) $\tau=0$ since the force acts on the axis and $l=0$
(f) $\tau=0$ since the line of action of the force passes through the location of the axis and $l=0$.

Reflect: The torque of a force depends on the direction of the force and where it is applied to the object.
10.3. Set Up: Let counterclockwise torques be positive. $\tau=F l$

Solve: $\tau_{1}=-F_{1} R=-(7.50 \mathrm{~N})(0.330 \mathrm{~m})=-2.48 \mathrm{~N} \cdot \mathrm{~m}$.

$$
\tau_{2}=+F_{2} R=-(5.30 \mathrm{~N})(0.330 \mathrm{~m})=+1.75 \mathrm{~N} \cdot \mathrm{~m}
$$

$\Sigma \tau=\tau_{1}+\tau_{2}=-0.73 \mathrm{~N} \cdot \mathrm{~m}$. The net torque is $0.73 \mathrm{~N} \cdot \mathrm{~m}$, clockwise.
10.5. Set Up: Let counterclockwise torques be positive. $\tau=F l$

Solve: $\tau_{1}=-F_{1} l_{1}=-(18.0 \mathrm{~N})(0.090 \mathrm{~m})=-1.62 \mathrm{~N} \cdot \mathrm{~m} . \tau_{2}=+F_{2} l_{2}=+(26.0 \mathrm{~N})(0.090 \mathrm{~m})=+2.34 \mathrm{~N} \cdot \mathrm{~m}$.
$\tau_{3}=+F_{3} l_{3}=+(14.0 \mathrm{~N})(0.127 \mathrm{~m})=+1.78 \mathrm{~N} \cdot \mathrm{~m}$.
$\Sigma \tau=\tau_{1}+\tau_{2}+\tau_{3}=2.50 \mathrm{~N} \cdot \mathrm{~m}$, counterclockwise.
Reflect: It is important to take into account the direction of each torque when computing the net torque.
10.12. Set Up: Apply $\Sigma F,=m a$, to the suitcase. Let $+y$ be downward. Apply $\Sigma r=/ a$ to the wheel. Let the counterclockwise sense of rotation be positive. The angular velocity ω and angular accelcration α of the wheel are related to the linear velocity v and linear acceleration a of the suitcase by $v=R a$ and $a=R a$.
Solve: (a) $\omega=\frac{v}{R}=\frac{3.50 \mathrm{~m} / \mathrm{s}}{0.400 \mathrm{~m}}=8.75 \mathrm{rad} / \mathrm{s}$
(b) For the suitcase, $y-y_{0}=4.00 \mathrm{~m}, v_{0 y}=0, v_{y}=3.50 \mathrm{~m} / \mathrm{s} \cdot v_{y}{ }^{2}=v_{0 y}{ }^{2}+2 a_{y}\left(y-y_{0}\right)$ gives

$$
\begin{gathered}
a_{y}=\frac{v_{y}^{2}-v_{0}^{2}}{2\left(y-y_{0}\right)}=\frac{(3.50 \mathrm{~m} / \mathrm{s})^{2}-0}{2(4.00 \mathrm{~m})}=+1.53 \mathrm{~m} / \mathrm{s}^{2} \\
\alpha=\frac{a_{y}}{R}=\frac{1.53 \mathrm{~m} / \mathrm{s}^{2}}{0.400 \mathrm{~m}}=3.82 \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

The free-body diagram for the suitcase is given in Figure 10.12a.

Figure 10.12
$\Sigma F_{y}=m a$, gives $m g-T=m a$ and $T=m(g-a)=(15.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}-1.53 \mathrm{~m} / \mathrm{s}^{2}\right)=124 \mathrm{~N}$. The freebody diagram for the wheel is given in Figure $10.12 \mathrm{~b} . \Sigma \tau=I \alpha$ gives $T R=I \alpha$ and

$$
I=\frac{T R}{\alpha}=\frac{(124 \mathrm{~N})(0.400 \mathrm{~m})}{3.82 \mathrm{~m} / \mathrm{s}^{2}}=13.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

10.13. Set Up: For the pulley $l=\frac{1}{2} M R^{2}$. The elevator has

$$
m_{\mathrm{I}}=\frac{22,500 \mathrm{~N}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=2300 \mathrm{~kg} .
$$

The free-body diagrams for the clevator, the pulley and the counterweight are given in Figure 10.13. Apply $\Sigma \vec{F}=m \vec{a}$ to the elevator and to the counterweight. For the elevator take $+y$ upward and for the counterweight take $+y$ downward, in each case in the direction of the acceleration of the object. Apply $\Sigma \tau=l \alpha$ to the pelley, with clockwise as the positive sense of rotation. n is the normal force applied to the pulley by the axle. The elevator and counterweight each have acceleration $a \cdot a=R \alpha$.

Elevalor

Counterweight

Pulley

Figure 10.13
10.29. Set Up: For a thin-walled hollow cylinder $I=m R^{2}$. For a slender rod rotating about an axis through its center, $I=\frac{1}{12} m l^{2}$.
Solve: $L_{\mathrm{i}}=L_{\mathrm{f}} \quad$ so $\quad I_{\mathrm{i}} \omega_{\mathrm{i}}=I_{\mathrm{f}} \omega_{\mathrm{f}} . \quad I_{\mathrm{i}}=0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}+\frac{1}{12}(8.0 \mathrm{~kg})(1.8 \mathrm{~m})^{2}=2.56 \mathrm{~kg} \cdot \mathrm{~m}^{2} . \quad I_{\mathrm{f}}=0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}+$ $(8.0 \mathrm{~kg})(0.25 \mathrm{~m})^{2}=0.90 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

$$
\omega_{\mathrm{f}}=\left(\frac{I_{\mathrm{i}}}{I_{\mathrm{f}}}\right) \omega_{\mathrm{i}}=\left(\frac{2.56 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{0.90 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)(0.40 \mathrm{rev} / \mathrm{s})=1.14 \mathrm{rev} / \mathrm{s}
$$

10.39. Set Up: The free-body diagram is given in Figure 10.39. F_{f} is the force on each foot and F_{b} is the force on each hand. Use coordinates as shown. Take the pivot at his feet and let counterclockwise torques to be positive.

Figure 10.39
Solve: $\Sigma \tau=0$ gives $+\left(2 F_{\mathrm{h}}\right)(1.70 \mathrm{~m})-w(1.15 \mathrm{~m})=0$

$$
F_{\mathrm{h}}=w \frac{1.15 \mathrm{~m}}{2(1.70 \mathrm{~m})}=0.338 w=272 \mathrm{~N}
$$

$\sum F_{y}=0$ gives $2 F_{\mathrm{f}}+2 F_{\mathrm{h}}-w=0$ and $F_{\mathrm{t}}=\frac{1}{2} w-F_{\mathrm{b}}=402 \mathrm{~N}-272 \mathrm{~N}=130 \mathrm{~N}$
Reflect: His center of mass is closer to his hands than to his feet, so his hands exert a greater force.

Chapter 11 Multiple Choice
3.

$$
\begin{align*}
\text { Pressure } & =\frac{F_{1}}{A}=\frac{F_{\sin 60^{\circ}}^{2 m^{2}}}{2} \\
& =\frac{(10 \mathrm{~N}) \frac{\sqrt{3}}{2}}{2 m^{2}} \\
& =\frac{5}{2} \sqrt{3} \mathrm{~N} / \mathrm{m}^{2} \\
& =4.33 \mathrm{~N} / \mathrm{m}^{2} \\
& =4.33 \mathrm{~Pa} \quad \text { (B) } \tag{B}
\end{align*}
$$

4.

$$
\begin{aligned}
\text { Shear Stress } & =\frac{F_{11}}{A}=\frac{F \cos 60^{\circ}}{2 m^{2}} \\
& =\frac{(10 \mathrm{~N}) \frac{1}{2}}{2 \mathrm{~m}^{2}} \\
& =2.5 \mathrm{~Pa} \quad \text { (A) }
\end{aligned}
$$

9. Dimensions same, weight same \Rightarrow stress is same

$$
\begin{aligned}
\text { stress }=-Y_{A} \frac{\Delta l_{A}}{l} & =-Y_{B} \frac{\Delta l_{B}}{l} \\
-Y_{A} \frac{2 \Delta l_{B}}{l} & =-Y_{B} \frac{\Delta l_{B}}{l} \quad \Delta l_{A}=Z \Delta l_{B} \\
Y_{A} & =\frac{1}{2} Y_{B} \quad \text { (C) }
\end{aligned}
$$

Chapter 11 Problems

11.5. Set Up: $A=50.0 \mathrm{~cm}^{2}=50.0 \times 10^{-4} \mathrm{~m}^{2} . Y=\frac{l_{0} F_{\perp}}{A \Delta l}$

Solve: relaxed: $Y=\frac{(0.200 \mathrm{~m})(25.0 \mathrm{~N})}{\left(50.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(3.0 \times 10^{-2} \mathrm{~m}\right)}=3.33 \times 10^{4} \mathrm{~Pa}$
maximum tension: $Y=\frac{(0.200 \mathrm{~m})(500 \mathrm{~N})}{\left(50.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(3.0 \times 10^{-2} \mathrm{~m}\right)}=6.67 \times 10^{5} \mathrm{~Pa}$
11.8. Set Up: $Y=\frac{\text { stress }}{\text { strain }}$. A 5.0% elongation means $\Delta l / l_{0}=0.050$. For a spring, $F_{\mathrm{T}}=k x$.

Solve: $\left(\right.$ a) stress $=Y \times$ strain $=\left(1474 \times 10^{6} \mathrm{~Pa}\right)(0.050)=7.4 \times 10^{7} \mathrm{~Pa}$
(b) stress $=F_{\mathrm{T}} / A$ so $F_{\mathrm{T}}=$ stress $\times A=\left(7.37 \times 10^{7} \mathrm{~Pa}\right)\left(78.1 \times 10^{-6} \mathrm{~m}^{2}\right)=5.76 \times 10^{3} \mathrm{~N}$

The change in length is $x=\Delta l=(0.050)(25 \mathrm{~cm})=1.25 \mathrm{~cm} . F_{\mathrm{T}}=k x$ gives

$$
k=\frac{F_{\mathrm{T}}}{x}=\frac{5.76 \times 10^{3} \mathrm{~N}}{1.25 \times 10^{-2} \mathrm{~m}}=4.6 \times 10^{5} \mathrm{~N} / \mathrm{m}
$$

(c) $F=13 \mathrm{mg}=13(75 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=9555 \mathrm{~N}$ and $x=\frac{F_{\mathrm{T}}}{k}=\frac{9555 \mathrm{~N}}{4.6 \times 10^{5} \mathrm{~N} / \mathrm{m}}=2.08 \mathrm{~cm}$
11.9. Set Up: $Y=\frac{F_{\mathrm{T}} / A}{\Delta l / l_{0}}$ so $F_{\mathrm{T}}=\left(\frac{Y A}{l_{0}}\right) \Delta l$ and $k=\frac{Y A}{l_{0}}$. From Problem $11.8, k=4.6 \times 10^{5} \mathrm{~N} / \mathrm{m}$ for the natural Achilles tendon. $A=\pi r^{2}$
Solve: (a) $k=\frac{Y A}{l_{0}}$ so $A=\frac{k l_{0}}{Y}=\frac{\left(4.6 \times 10^{5} \mathrm{~N} / \mathrm{m}\right)(0.25 \mathrm{~m})}{30 \times 10^{9} \mathrm{~Pa}}=3.8 \times 10^{-6} \mathrm{~m}^{2}$
$A=\pi r^{2}$ so $r=\sqrt{A / \pi}=1.1 \mathrm{~mm}$ and the diameter is 2.2 mm .
(b) The natural tendon has $r=\sqrt{\left(78.1 \mathrm{~mm}^{2}\right) / \pi}=4.99 \mathrm{~mm}$ and diameter 10.0 mm . The artificial tendon's diameter is much smaller.
Reflect: The artificial tendon has a larger Y and therefore a smaller diameter.
11.10. Set Up: stress $=\frac{F_{\perp}}{A}$, strain $=\frac{\Delta l}{l_{0}}$.

Solve: (a) $196 \times 10^{6} \mathrm{~Pa}=\frac{F_{\perp}}{\pi\left(25 \times 10^{-6} \mathrm{~m}\right)^{2}}$ and $F_{\perp}=0.385 \mathrm{~N}$.
(b) $0.40=\frac{l-l_{0}}{l_{0}}$ and $l=12 \mathrm{~cm}$ gives $l_{0}=8.6 \mathrm{~cm}$.
11.11. Set Up: $=\frac{F_{\mathrm{T}} / A}{\Delta l / l_{0}}$

Solve: (a) $F_{\mathrm{T}}=8 m g=5880 \mathrm{~N} . \frac{\Delta l}{l_{0}}=\frac{F_{\mathrm{T}}}{A Y}=\frac{5880 \mathrm{~N}}{\left(10 \times 10^{-4} \mathrm{~m}^{2}\right)\left(24 \times 10^{6} \mathrm{~Pa}\right)}=0.24=24 \%$
(b) $F_{\mathrm{T}}=4 m g$ so $\frac{\Delta l}{l_{0}}=\frac{1}{2}(24 \%)=12 \%$

Reflect: Young's modulus for cartilage is much smaller than typical values for metals and the fractional change in length is larger.
11.14. Set Up: $\frac{\Delta V}{V_{0}}=-\frac{\Delta p}{B} . \Delta p=\left(1.0 \times 10^{4} \mathrm{~Pa} / \mathrm{m}\right) d$, where d is the depth below the surface.

Solve: (a) $\Delta V=-\frac{\Delta p}{B} V_{0}=-\frac{\left(1.0 \times 10^{4} \mathrm{~Pa} / \mathrm{m}\right)(33 \mathrm{~m})}{2.2 \times 10^{9} \mathrm{~Pa}}\left(1.0 \mathrm{~cm}^{3}\right)=-1.5 \times 10^{-4} \mathrm{~cm}^{3}$
One cubic centimeter of her blood decreases in volume by $1.5 \times 10^{-4} \mathrm{~cm}^{3}$.
(b) $\frac{\Delta V}{V_{0}}=-\frac{1}{2}$ gives $\Delta p=B\left(\frac{1}{2}\right)=1.1 \times 10^{9} \mathrm{~Pa}$

The depth would be $d=\frac{\Delta p}{1.0 \times 10^{4} \mathrm{~Pa} / \mathrm{m}}=\frac{1.1 \times 10^{9} \mathrm{~Pa}}{1.0 \times 10^{4} \mathrm{~Pa} / \mathrm{m}}=1.1 \times 10^{5} \mathrm{~m}=110 \mathrm{~km}$. The ocean is not this deep; the greatest depth in the ocean is an order of magnitude less than this, about 11 km .
11.16. Set Up: $\frac{\Delta V}{V_{0}}=-\frac{\Delta p}{B} .1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$.

Solve: (a) $\Delta p=-B \frac{\Delta V}{V_{0}}=-\left(15 \times 10^{9} \mathrm{~Pa}\right)(-0.0010)=1.5 \times 10^{7} \mathrm{~Pa}=150 \mathrm{~atm}$
(b) The depth for a pressure increase of $1.5 \times 10^{7} \mathrm{~Pa}$ is 1.5 km . Unprotected dives do not approach this depth so bone compression is not a concern.

