FINAL EXAM Practice Problems ANSWERS

- 1. C (Other choices depend on wave nature of light)
- 2. D

3. D (
$$\gamma = \frac{1}{\sqrt{1 - 0.86^2}} = 1.96$$
 $L = \frac{L_0}{\gamma} = \frac{1m}{1.96} = 0.51m$)

4. C (
$$E = hf = \frac{hc}{\lambda} = \frac{1240eV}{155nm} = 8eV$$
)

- 5. A
- 6. B $(K_{max} = hf \phi = 8eV 6.35eV = 1.65eV)$

7. **B**
$$(\Delta \lambda = \frac{h}{mc} (1 - \cos \theta) = 5.952 \text{ x } 10^{-4} \text{ nm}$$

- 8. D $(\lambda_{deBroglie} = h/p)$
- 9. C $(\Delta x \sim \frac{h}{\Delta p} = \frac{h}{m\Delta v})$ particle with the lesser mass has the greater uncertainty in position)
- 10. C
- 11. A
- 12. D (Convex mirror has a negative focal length. Using the mirror equation, we have

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \implies \frac{1}{-30} = \frac{1}{30} + \frac{1}{q} \implies q = -15. \quad q < 0, \text{ so image is virtual, i.e. behind the mirror)}$$

- 13. B. (Use lensmaker's equation, $\frac{1}{f} = (n-1) \left(\frac{1}{R_1} \frac{1}{R_2} \right)$ with n = 1.5, R_1 = 5 cm, R_2 = infinity
- 14. A [Convex mirror is diverging ("convenience store security mirror"). Diverging mirrors and diverging lenses cannot form real images.]

15. C ($B = \frac{\mu_0 I}{2R}$ \implies $I = \frac{2RB}{\mu_0}$. Must convert R to meters.)