Graphical method for finding image height, orientation, and location.

Case 1: Lenses

(1) Parallel incident ray refracts to pass through second focal point F_{2}
(2) Ray through center of lens (does not deviate appreciably)
(3) Ray through the first focal point F_{1} that emerges parallel to the axis

(a) Converging lens

(b) Diverging lens

A FIGURE 24.36 Principal-ray diagrams showing the graphical method for locating an image produced by a thin lens.

Case 2: Mirrors

\triangle FIGURE 24.19 Principal-ray diagrams for concave and convex mirrors. To find the image point Q, we draw any two of these rays; the image point is located at their intersection.

